Redis入门 - 数据类型:3种特殊类型详解

Redis除了上文中5种基础数据类型,还有三种特殊的数据类型,分别是 HyperLogLogs(基数统计), Bitmaps (位图) 和 geospatial (地理位置)。@pdai

HyperLogLogs(基数统计)

Redis 2.8.9 版本更新了 Hyperloglog 数据结构!

  • 什么是基数?

举个例子,A = {1, 2, 3, 4, 5}, B = {3, 5, 6, 7, 9};那么基数(不重复的元素)= 1, 2, 4, 6, 7, 9; (允许容错,即可以接受一定误差)

  • HyperLogLogs 基数统计用来解决什么问题

这个结构可以非常省内存的去统计各种计数,比如注册 IP 数、每日访问 IP 数、页面实时UV、在线用户数,共同好友数等。

  • 它的优势体现在哪

一个大型的网站,每天 IP 比如有 100 万,粗算一个 IP 消耗 15 字节,那么 100 万个 IP 就是 15M。而 HyperLogLog 在 Redis 中每个键占用的内容都是 12K,理论存储近似接近 2^64 个值,不管存储的内容是什么,它一个基于基数估算的算法,只能比较准确的估算出基数,可以使用少量固定的内存去存储并识别集合中的唯一元素。而且这个估算的基数并不一定准确,是一个带有 0.81% 标准错误的近似值(对于可以接受一定容错的业务场景,比如IP数统计,UV等,是可以忽略不计的)。

  • 相关命令使用
127.0.0.1:6379> pfadd key1 a b c d e f g h i	# 创建第一组元素
(integer) 1
127.0.0.1:6379> pfcount key1					# 统计元素的基数数量
(integer) 9
127.0.0.1:6379> pfadd key2 c j k l m e g a		# 创建第二组元素
(integer) 1
127.0.0.1:6379> pfcount key2
(integer) 8
127.0.0.1:6379> pfmerge key3 key1 key2			# 合并两组:key1 key2 -> key3 并集
OK
127.0.0.1:6379> pfcount key3
(integer) 13
1
2
3
4
5
6
7
8
9
10
11
12

Bitmap (位存储)

Bitmap 即位图数据结构,都是操作二进制位来进行记录,只有0 和 1 两个状态。

  • 用来解决什么问题

比如:统计用户信息,活跃,不活跃! 登录,未登录! 打卡,不打卡! 两个状态的,都可以使用 Bitmaps

如果存储一年的打卡状态需要多少内存呢? 365 天 = 365 bit 1字节 = 8bit 46 个字节左右!

  • 相关命令使用

使用bitmap 来记录 周一到周日的打卡! 周一:1 周二:0 周三:0 周四:1 ......

127.0.0.1:6379> setbit sign 0 1
(integer) 0
127.0.0.1:6379> setbit sign 1 1
(integer) 0
127.0.0.1:6379> setbit sign 2 0
(integer) 0
127.0.0.1:6379> setbit sign 3 1
(integer) 0
127.0.0.1:6379> setbit sign 4 0
(integer) 0
127.0.0.1:6379> setbit sign 5 0
(integer) 0
127.0.0.1:6379> setbit sign 6 1
(integer) 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

查看某一天是否有打卡!

127.0.0.1:6379> getbit sign 3
(integer) 1
127.0.0.1:6379> getbit sign 5
(integer) 0
1
2
3
4

统计操作,统计 打卡的天数!

127.0.0.1:6379> bitcount sign # 统计这周的打卡记录,就可以看到是否有全勤!
(integer) 3
1
2

geospatial (地理位置)

Redis 的 Geo 在 Redis 3.2 版本就推出了! 这个功能可以推算地理位置的信息: 两地之间的距离, 方圆几里的人

geoadd

添加地理位置

127.0.0.1:6379> geoadd china:city 118.76 32.04 manjing 112.55 37.86 taiyuan 123.43 41.80 shenyang
(integer) 3
127.0.0.1:6379> geoadd china:city 144.05 22.52 shengzhen 120.16 30.24 hangzhou 108.96 34.26 xian
(integer) 3
1
2
3
4

规则

两级无法直接添加,我们一般会下载城市数据(这个网址可以查询 GEO: http://www.jsons.cn/lngcode)!

  • 有效的经度从-180度到180度。
  • 有效的纬度从-85.05112878度到85.05112878度。
# 当坐标位置超出上述指定范围时,该命令将会返回一个错误。
127.0.0.1:6379> geoadd china:city 39.90 116.40 beijin
(error) ERR invalid longitude,latitude pair 39.900000,116.400000
1
2
3

geopos

获取指定的成员的经度和纬度

127.0.0.1:6379> geopos china:city taiyuan manjing
1) 1) "112.54999905824661255"
   1) "37.86000073876942196"
2) 1) "118.75999957323074341"
   1) "32.03999960287850968"
1
2
3
4
5

获得当前定位, 一定是一个坐标值!

geodist

如果不存在, 返回空

单位如下

  • m
  • km
  • mi 英里
  • ft 英尺
127.0.0.1:6379> geodist china:city taiyuan shenyang m
"1026439.1070"
127.0.0.1:6379> geodist china:city taiyuan shenyang km
"1026.4391"
1
2
3
4

georadius

附近的人 ==> 获得所有附近的人的地址, 定位, 通过半径来查询

获得指定数量的人

127.0.0.1:6379> georadius china:city 110 30 1000 km			以 100,30 这个坐标为中心, 寻找半径为1000km的城市
1) "xian"
2) "hangzhou"
3) "manjing"
4) "taiyuan"
127.0.0.1:6379> georadius china:city 110 30 500 km
1) "xian"
127.0.0.1:6379> georadius china:city 110 30 500 km withdist
1) 1) "xian"
   2) "483.8340"
127.0.0.1:6379> georadius china:city 110 30 1000 km withcoord withdist count 2
1) 1) "xian"
   2) "483.8340"
   3) 1) "108.96000176668167114"
      2) "34.25999964418929977"
2) 1) "manjing"
   2) "864.9816"
   3) 1) "118.75999957323074341"
      2) "32.03999960287850968"
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

参数 key 经度 纬度 半径 单位 [显示结果的经度和纬度] [显示结果的距离] [显示的结果的数量]

georadiusbymember

显示与指定成员一定半径范围内的其他成员

127.0.0.1:6379> georadiusbymember china:city taiyuan 1000 km
1) "manjing"
2) "taiyuan"
3) "xian"
127.0.0.1:6379> georadiusbymember china:city taiyuan 1000 km withcoord withdist count 2
1) 1) "taiyuan"
   2) "0.0000"
   3) 1) "112.54999905824661255"
      2) "37.86000073876942196"
2) 1) "xian"
   2) "514.2264"
   3) 1) "108.96000176668167114"
      2) "34.25999964418929977"
1
2
3
4
5
6
7
8
9
10
11
12
13

参数与 georadius 一样

geohash(较少使用)

该命令返回11个字符的hash字符串

127.0.0.1:6379> geohash china:city taiyuan shenyang
1) "ww8p3hhqmp0"
2) "wxrvb9qyxk0"
1
2
3

将二维的经纬度转换为一维的字符串, 如果两个字符串越接近, 则距离越近

底层

geo底层的实现原理实际上就是Zset, 我们可以通过Zset命令来操作geo

127.0.0.1:6379> type china:city
zset
1
2

查看全部元素 删除指定的元素

127.0.0.1:6379> zrange china:city 0 -1 withscores
 1) "xian"
 2) "4040115445396757"
 3) "hangzhou"
 4) "4054133997236782"
 5) "manjing"
 6) "4066006694128997"
 7) "taiyuan"
 8) "4068216047500484"
 9) "shenyang"
1)  "4072519231994779"
2)  "shengzhen"
3)  "4154606886655324"
127.0.0.1:6379> zrem china:city manjing
(integer) 1
127.0.0.1:6379> zrange china:city 0 -1
1) "xian"
2) "hangzhou"
3) "taiyuan"
4) "shenyang"
5) "shengzhen"
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

参考文章

  • http://www.jsons.cn/lngcode
  • https://www.cnblogs.com/junlinsky/p/13528452.html
  • https://www.cnblogs.com/touyel/p/12728096.html
  • https://www.cnblogs.com/junlinsky/p/13528452.html
  • https://www.cnblogs.com/wang-sky/p/13857787.html

联系我

添加@pdai微信

PS:添加时请备注Java全栈,谢谢!