算法思想 - 搜索算法

本文主要介绍算法中搜索算法的思想,主要包含BFS,DFS。@pdai

搜索相关题目

深度优先搜索和广度优先搜索广泛运用于树和图中,但是它们的应用远远不止如此。

BFS

image

广度优先搜索的搜索过程有点像一层一层地进行遍历,每层遍历都以上一层遍历的结果作为起点,遍历一个距离能访问到的所有节点。需要注意的是,遍历过的节点不能再次被遍历。

第一层:

  • 0 -> {6,2,1,5};

第二层:

  • 6 -> {4}
  • 2 -> {}
  • 1 -> {}
  • 5 -> {3}

第三层:

  • 4 -> {}
  • 3 -> {}

可以看到,每一层遍历的节点都与根节点距离相同。设 di 表示第 i 个节点与根节点的距离,推导出一个结论: 对于先遍历的节点 i 与后遍历的节点 j,有 di<=dj。利用这个结论,可以求解最短路径等 最优解 问题: 第一次遍历到目的节点,其所经过的路径为最短路径。应该注意的是,使用 BFS 只能求解无权图的最短路径。

在程序实现 BFS 时需要考虑以下问题:

  • 队列: 用来存储每一轮遍历得到的节点;
  • 标记: 对于遍历过的节点,应该将它标记,防止重复遍历。

计算在网格中从原点到特定点的最短路径长度

[[1,1,0,1],
 [1,0,1,0],
 [1,1,1,1],
 [1,0,1,1]]
1
2
3
4

1 表示可以经过某个位置,求解从 (0, 0) 位置到 (tr, tc) 位置的最短路径长度。

public int minPathLength(int[][] grids, int tr, int tc) {
    final int[][] direction = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
    final int m = grids.length, n = grids[0].length;
    Queue<Pair<Integer, Integer>> queue = new LinkedList<>();
    queue.add(new Pair<>(0, 0));
    int pathLength = 0;
    while (!queue.isEmpty()) {
        int size = queue.size();
        pathLength++;
        while (size-- > 0) {
            Pair<Integer, Integer> cur = queue.poll();
            for (int[] d : direction) {
                int nr = cur.getKey() + d[0], nc = cur.getValue() + d[1];
                Pair<Integer, Integer> next = new Pair<>(nr, nc);
                if (next.getKey() < 0 || next.getValue() >= m
                        || next.getKey() < 0 || next.getValue() >= n) {

                    continue;
                }
                grids[next.getKey()][next.getValue()] = 0; // 标记
                if (next.getKey() == tr && next.getValue() == tc) {
                    return pathLength;
                }
                queue.add(next);
            }
        }
    }
    return -1;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

组成整数的最小平方数数量

279. Perfect Squares (Medium) (opens new window)

For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
1

可以将每个整数看成图中的一个节点,如果两个整数之差为一个平方数,那么这两个整数所在的节点就有一条边。

要求解最小的平方数数量,就是求解从节点 n 到节点 0 的最短路径。

本题也可以用动态规划求解,在之后动态规划部分中会再次出现。

public int numSquares(int n) {
    List<Integer> squares = generateSquares(n);
    Queue<Integer> queue = new LinkedList<>();
    boolean[] marked = new boolean[n + 1];
    queue.add(n);
    marked[n] = true;
    int level = 0;
    while (!queue.isEmpty()) {
        int size = queue.size();
        level++;
        while (size-- > 0) {
            int cur = queue.poll();
            for (int s : squares) {
                int next = cur - s;
                if (next < 0) {
                    break;
                }
                if (next == 0) {
                    return level;
                }
                if (marked[next]) {
                    continue;
                }
                marked[next] = true;
                queue.add(cur - s);
            }
        }
    }
    return n;
}

/**
 * 生成小于 n 的平方数序列
 * @return 1,4,9,...
 */
private List<Integer> generateSquares(int n) {
    List<Integer> squares = new ArrayList<>();
    int square = 1;
    int diff = 3;
    while (square <= n) {
        squares.add(square);
        square += diff;
        diff += 2;
    }
    return squares;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

最短单词路径

127. Word Ladder (Medium) (opens new window)

Input:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]

Output: 5

Explanation: As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.
1
2
3
4
5
6
7
8
9
Input:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]

Output: 0

Explanation: The endWord "cog" is not in wordList, therefore no possible transformation.
1
2
3
4
5
6
7
8

找出一条从 beginWord 到 endWord 的最短路径,每次移动规定为改变一个字符,并且改变之后的字符串必须在 wordList 中。

public int ladderLength(String beginWord, String endWord, List<String> wordList) {
    wordList.add(beginWord);
    int N = wordList.size();
    int start = N - 1;
    int end = 0;
    while (end < N && !wordList.get(end).equals(endWord)) {
        end++;
    }
    if (end == N) {
        return 0;
    }
    List<Integer>[] graphic = buildGraphic(wordList);
    return getShortestPath(graphic, start, end);
}

private List<Integer>[] buildGraphic(List<String> wordList) {
    int N = wordList.size();
    List<Integer>[] graphic = new List[N];
    for (int i = 0; i < N; i++) {
        graphic[i] = new ArrayList<>();
        for (int j = 0; j < N; j++) {
            if (isConnect(wordList.get(i), wordList.get(j))) {
                graphic[i].add(j);
            }
        }
    }
    return graphic;
}

private boolean isConnect(String s1, String s2) {
    int diffCnt = 0;
    for (int i = 0; i < s1.length() && diffCnt <= 1; i++) {
        if (s1.charAt(i) != s2.charAt(i)) {
            diffCnt++;
        }
    }
    return diffCnt == 1;
}

private int getShortestPath(List<Integer>[] graphic, int start, int end) {
    Queue<Integer> queue = new LinkedList<>();
    boolean[] marked = new boolean[graphic.length];
    queue.add(start);
    marked[start] = true;
    int path = 1;
    while (!queue.isEmpty()) {
        int size = queue.size();
        path++;
        while (size-- > 0) {
            int cur = queue.poll();
            for (int next : graphic[cur]) {
                if (next == end) {
                    return path;
                }
                if (marked[next]) {
                    continue;
                }
                marked[next] = true;
                queue.add(next);
            }
        }
    }
    return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

DFS

image

广度优先搜索一层一层遍历,每一层得到的所有新节点,要用队列存储起来以备下一层遍历的时候再遍历。

而深度优先搜索在得到一个新节点时立马对新节点进行遍历: 从节点 0 出发开始遍历,得到到新节点 6 时,立马对新节点 6 进行遍历,得到新节点 4;如此反复以这种方式遍历新节点,直到没有新节点了,此时返回。返回到根节点 0 的情况是,继续对根节点 0 进行遍历,得到新节点 2,然后继续以上步骤。

从一个节点出发,使用 DFS 对一个图进行遍历时,能够遍历到的节点都是从初始节点可达的,DFS 常用来求解这种 可达性 问题。

在程序实现 DFS 时需要考虑以下问题:

  • 栈: 用栈来保存当前节点信息,当遍历新节点返回时能够继续遍历当前节点。可以使用递归栈。
  • 标记: 和 BFS 一样同样需要对已经遍历过的节点进行标记。

查找最大的连通面积

695. Max Area of Island (Easy) (opens new window)

[[0,0,1,0,0,0,0,1,0,0,0,0,0],
 [0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,1,1,0,1,0,0,0,0,0,0,0,0],
 [0,1,0,0,1,1,0,0,1,0,1,0,0],
 [0,1,0,0,1,1,0,0,1,1,1,0,0],
 [0,0,0,0,0,0,0,0,0,0,1,0,0],
 [0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,0,0,0,0,0,0,1,1,0,0,0,0]]
1
2
3
4
5
6
7
8
private int m, n;
private int[][] direction = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

public int maxAreaOfIsland(int[][] grid) {
    if (grid == null || grid.length == 0) {
        return 0;
    }
    m = grid.length;
    n = grid[0].length;
    int maxArea = 0;
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            maxArea = Math.max(maxArea, dfs(grid, i, j));
        }
    }
    return maxArea;
}

private int dfs(int[][] grid, int r, int c) {
    if (r < 0 || r >= m || c < 0 || c >= n || grid[r][c] == 0) {
        return 0;
    }
    grid[r][c] = 0;
    int area = 1;
    for (int[] d : direction) {
        area += dfs(grid, r + d[0], c + d[1]);
    }
    return area;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

矩阵中的连通分量数目

200. Number of Islands (Medium) (opens new window)

Input:
11000
11000
00100
00011

Output: 3
1
2
3
4
5
6
7

可以将矩阵表示看成一张有向图。

private int m, n;
private int[][] direction = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

public int numIslands(char[][] grid) {
    if (grid == null || grid.length == 0) {
        return 0;
    }
    m = grid.length;
    n = grid[0].length;
    int islandsNum = 0;
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            if (grid[i][j] != '0') {
                dfs(grid, i, j);
                islandsNum++;
            }
        }
    }
    return islandsNum;
}

private void dfs(char[][] grid, int i, int j) {
    if (i < 0 || i >= m || j < 0 || j >= n || grid[i][j] == '0') {
        return;
    }
    grid[i][j] = '0';
    for (int[] d : direction) {
        dfs(grid, i + d[0], j + d[1]);
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

好友关系的连通分量数目

547. Friend Circles (Medium) (opens new window)

Input:
[[1,1,0],
 [1,1,0],
 [0,0,1]]
Output: 2
Explanation:The 0th and 1st students are direct friends, so they are in a friend circle.
The 2nd student himself is in a friend circle. So return 2.
1
2
3
4
5
6
7

好友关系可以看成是一个无向图,例如第 0 个人与第 1 个人是好友,那么 M[0][1] 和 M[1][0] 的值都为 1。

private int n;

public int findCircleNum(int[][] M) {
    n = M.length;
    int circleNum = 0;
    boolean[] hasVisited = new boolean[n];
    for (int i = 0; i < n; i++) {
        if (!hasVisited[i]) {
            dfs(M, i, hasVisited);
            circleNum++;
        }
    }
    return circleNum;
}

private void dfs(int[][] M, int i, boolean[] hasVisited) {
    hasVisited[i] = true;
    for (int k = 0; k < n; k++) {
        if (M[i][k] == 1 && !hasVisited[k]) {
            dfs(M, k, hasVisited);
        }
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

填充封闭区域

130. Surrounded Regions (Medium) (opens new window)

For example,
X X X X
X O O X
X X O X
X O X X

After running your function, the board should be:
X X X X
X X X X
X X X X
X O X X
1
2
3
4
5
6
7
8
9
10
11

使被 'X' 包围的 'O' 转换为 'X'。

先填充最外侧,剩下的就是里侧了。

private int[][] direction = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
private int m, n;

public void solve(char[][] board) {
    if (board == null || board.length == 0) {
        return;
    }

    m = board.length;
    n = board[0].length;

    for (int i = 0; i < m; i++) {
        dfs(board, i, 0);
        dfs(board, i, n - 1);
    }
    for (int i = 0; i < n; i++) {
        dfs(board, 0, i);
        dfs(board, m - 1, i);
    }

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            if (board[i][j] == 'T') {
                board[i][j] = 'O';
            } else if (board[i][j] == 'O') {
                board[i][j] = 'X';
            }
        }
    }
}

private void dfs(char[][] board, int r, int c) {
    if (r < 0 || r >= m || c < 0 || c >= n || board[r][c] != 'O') {
        return;
    }
    board[r][c] = 'T';
    for (int[] d : direction) {
        dfs(board, r + d[0], c + d[1]);
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

能到达的太平洋和大西洋的区域

417. Pacific Atlantic Water Flow (Medium) (opens new window)

Given the following 5x5 matrix:

  Pacific ~   ~   ~   ~   ~
       ~  1   2   2   3  (5) *
       ~  3   2   3  (4) (4) *
       ~  2   4  (5)  3   1  *
       ~ (6) (7)  1   4   5  *
       ~ (5)  1   1   2   4  *
          *   *   *   *   * Atlantic

Return:
[[0, 4], [1, 3], [1, 4], [2, 2], [3, 0], [3, 1], [4, 0]] (positions with parentheses in above matrix).
1
2
3
4
5
6
7
8
9
10
11
12

左边和上边是太平洋,右边和下边是大西洋,内部的数字代表海拔,海拔高的地方的水能够流到低的地方,求解水能够流到太平洋和大西洋的所有位置。


private int m, n;
private int[][] matrix;
private int[][] direction = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

public List<int[]> pacificAtlantic(int[][] matrix) {
    List<int[]> ret = new ArrayList<>();
    if (matrix == null || matrix.length == 0) {
        return ret;
    }

    m = matrix.length;
    n = matrix[0].length;
    this.matrix = matrix;
    boolean[][] canReachP = new boolean[m][n];
    boolean[][] canReachA = new boolean[m][n];

    for (int i = 0; i < m; i++) {
        dfs(i, 0, canReachP);
        dfs(i, n - 1, canReachA);
    }
    for (int i = 0; i < n; i++) {
        dfs(0, i, canReachP);
        dfs(m - 1, i, canReachA);
    }

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            if (canReachP[i][j] && canReachA[i][j]) {
                ret.add(new int[]{i, j});
            }
        }
    }

    return ret;
}

private void dfs(int r, int c, boolean[][] canReach) {
    if (canReach[r][c]) {
        return;
    }
    canReach[r][c] = true;
    for (int[] d : direction) {
        int nextR = d[0] + r;
        int nextC = d[1] + c;
        if (nextR < 0 || nextR >= m || nextC < 0 || nextC >= n
                || matrix[r][c] > matrix[nextR][nextC]) {

            continue;
        }
        dfs(nextR, nextC, canReach);
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

联系我

添加@pdai微信

PS:添加时请备注Java全栈,谢谢!